## Unitarity of quantum field theory

We prove spectral optical identities in quantum field theories of physical particles (defined by the Feynman $i\epsilon $ prescription) and purely virtual particles (defined by the fakeon prescription). The identities are derived by means of purely algebraic operations and hold for every (multi)threshold separately and for arbitrary frequencies. Their major significance is that they offer a deeper understanding on the problem of unitarity in quantum field theory. In particular, they apply to “skeleton” diagrams, before integrating on the space components of the loop momenta and the phase spaces. In turn, the skeleton diagrams obey a spectral optical theorem, which gives the usual optical theorem for amplitudes, once the integrals on the space components of the loop momenta and the phase spaces are restored. The fakeon

prescription/projection is implemented by dropping the thresholds that involve fakeon frequencies. We give examples at one loop (bubble, triangle, box, pentagon and hexagon), two loops (triangle with “diagonal”, box with diagonal) and arbitrarily many loops. We also derive formulas for the loop integrals with fakeons and relate them to the known formulas for the loop integrals with physical particles.

J. High Energy Phys. 11 (2021) 030 | DOI: https://doi.org/10.1007/JHEP11(2021)030

The search for purely virtual quanta has attracted interest in the past. We consider various proposals and compare them to the concept of fake particle, or “fakeon”. In particular, the Feynman-Wheeler propagator, which amounts to using the Cauchy principal value inside Feynman diagrams, violates renormalizability, unitarity and stability, due to the coexistence of the prescriptions $\pm i\epsilon $. We contrast the Feynman, fakeon and Feynman-Wheeler prescriptions in ordinary as well as cut diagrams. The fakeon does not have the problems of the Feynman-Wheeler propagator and emerges as the correct concept of purely virtual quantum. It allows us to make sense of quantum gravity at the fundamental level, and places it on an equal footing with the standard model. The resulting theory of quantum gravity is perturbative up to an incredibly high energy.

J. High Energ. Phys. 03 (2020) 142 | DOI: 10.1007/JHEP03(2020)142

Talk given at Penn State University, Dec 17, 2019

A new quantization prescription is able to endow quantum field theory with a new type of “particle”, the fakeon (fake particle), which mediates interactions, but cannot be observed. A massive fakeon of spin 2 (together with a scalar field) allows us to build a theory of quantum gravity that is both renormalizable and unitary, and to some extent unique. The theory predicts that causality is lost at sufficiently small distances, where time makes no longer sense. After presenting the general formulation of the theory, I explain its nontrivial classical limit, the modifications of the FLRW metric and the role of the cosmological constant. Finally, I discuss the possibility that the Higgs boson might be a fakeon.

The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantum gravity. The unitarity assumption is better understood, since it allows for the presence of physical particles as well as fake particles (fakeons). The locality assumption is applied to an interim classical action, since the true classical action is nonlocal and emerges from the quantization and a later process of classicization. The renormalizability assumption is refined to single out the special role of the gauge couplings. We show that the upgraded principle leads to an essentially unique theory of quantum gravity. In particular, in four dimensions, a fakeon of spin 2, together with a scalar field, is able to make the theory renormalizable while preserving unitarity. We offer an overview of quantum field theories of particles and fakeons in various dimensions, with and without gravity.

Proceedings of the conference **“Progress and Visions in Quantum Theory in View of Gravity: Bridging foundations of physics and mathematics“**, Max Planck Institute for Mathematics in the Sciences, Leipzig, October 2018

Talk given at the conference “Quantum Gravity and Quantum Geometry“, Nijmegen Oct 29 – Nov 1, 2019

A new quantization prescription is able to endow quantum field theory with a new type of “particle”, the fakeon (fake particle), which mediates interactions, but cannot be observed. A massive fakeon of spin 2 (together with a scalar field) allows us to build a theory of quantum gravity that is both renormalizable and unitary, and to some extent unique. The theory predicts that causality is lost at sufficiently small distances, where time makes no longer sense. After formulating the theory, I explain its main properties. In particular: the nontrivial classical limit, the modifications of the FLRW metric and the roles of the cosmological constant and the Hubble constant.

Talk given at the conference **PAFT 2019 – Current problems in theoretical physics. Aspects of nonperturbative QFT, foundations of quantum theory, quantum spacetime. XXV edition, Vietri sul Mare (Salerno, Italy), April 13-17, 2019**

A new quantization prescription is able to endow quantum field theory with a new type of “particle”, the fakeon (fake particle), which mediates interactions, but cannot be observed. A massive fakeon of spin 2 (together with a scalar field) allows us to build a theory of quantum gravity that is both renormalizable and unitary, and to some extent unique. After presenting the general properties of this theory, I discuss its classical limit, which carries important remnants of the fakeon quantization prescription and reveals unforeseen features.

Talk given at the Conference “**Scale invariance in particle physics and cosmology**“, CERN, on January 29th, 2019

A new quantization prescription is able to endow quantum field theory with a new type of “particle”, the fakeon (fake particle), which mediates interactions, but cannot be observed. A massive fakeon of spin 2 (together with a scalar field) allows us to build a theory of quantum gravity that is both renormalizable and unitary, and to some extent unique. After presenting the general properties of this theory, I discuss its classical limit, which carries important remnants of the fakeon quantization prescription.

Talk given at the Department of Physics and Astronomy of Southampton University, UK, on Nov 16th, 2018

I introduce the concept of fake particle and study how it is used to formulate a consistent theory of quantum gravity. Fakeons arise from a new quantization prescription, alternative to the Feynman one, for the poles of higher-derivative theories, which avoids the problem of ghosts. The fake particles mediate interactions and simulate true particles in many situations. Nevertheless, they are not asymptotic states and cannot be detected directly. The Wick rotation and the S matrix are regionwise analytic and the amplitudes can be calculated in all regions starting from the Euclidean one by means of an unambiguous, but nonanalytic operation. By reconciling renormalizability and unitarity in higher-derivative theories, the models containing both true and fake particles are good candidates to explain quantum gravity. In pole position is the unique theory that is strictly renormalizable. One of the major physical predictions due to the fakeons is the violation of microcausality. I discuss the classical limit of the theory and the acausal corrections to the Einstein equations.

Talk given at the conference

**Max Planck Institute for Mathematics in the Sciences, Leipzig**

October 04, 2018

I claim that the best correspondence principle for quantum field theory and quantum gravity is made of unitarity, locality and proper renormalizability (which is a refinement of strict renormalizability), combined with fundamental local symmetries and the requirement of having a finite number of fields. Quantum gravity is identified in an essentially unique way. It emerges from a new quantization prescription, which introduces the notion of fake particle, or “fakeon”, and uses it to resolve the long-standing problem of the higher-derivative ghosts. I discuss the major physical prediction of the theory, which is the violation of causality at small distances. The correspondence principle identifies the gauge interactions uniquely in form, but does not predict the gauge group. On the other hand, the matter sector remains almost completely unrestricted.

We discuss the fate of the correspondence principle beyond quantum mechanics, specifically in quantum field theory and quantum gravity, in connection with the intrinsic limitations of the human ability to observe the external world. We conclude that the best correspondence principle is made of unitarity, locality, proper renormalizability (a refinement of strict renormalizability), combined with fundamental local symmetries and the requirement of having a finite number of fields. Quantum gravity is identified in an essentially unique way. The gauge interactions are uniquely identified in form. Instead, the matter sector remains basically unrestricted. The major prediction is the violation of causality at small distances.

OSF preprints | DOI: 10.31219/osf.io/d2nj7

PhilSci 15287 (v1: PhilSci 15048)

Preprints 2018, 2018110213 | DOI: 10.20944/preprints201811.0213.v1